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Abstract

Current machine perception techniques that typi-
cally use segmentation followed by object recognition
lack the required robustness to cope with the large vari-
ety of situations encountered in real-world navigation.
Many ezxisting techniques are brittle in the sense that
even minor changes in the expected task environment
(e.g., different lighting conditions, geometrical distor-
tion, etc.) can severely degrade the performance of
the system or even make it fail completely. In this
paper we present a system that achieves robust perfor-
mance by using local reinforcement learning to induce
a highly adaptive mapping from input images to seg-
mentation strategies for successful recognition. This
is accomplished by using the confidence level of model
matching as reinforcement to drive learning. Local
reinforcement learning gives rises to better improve-
ment in recognition performance. The system is veri-
fied through ezperiments on a large set of real images
of traffic signs.
1 Introduction

Sensing and perception are of paramount impor-
tance to any cognitive automaton. Acquiring such
abilities is a prerequisite for autonomous platforms
that must operate in a dynamic environment. This
objective, however, can be challenging in real world
navigation applications due to the presence of clut-
ter, object occlusion, data uncertainty, limited a pri-
ori model information, and changes in the environ-
mental conditions that can not be controlled in the
outdoor scenarios. As an example, suppose an au-
tonomous platform is tasked with a mail delivery mis-
sion to each department on a typical university cam-
pus. For this scenario, the platform must recognize
traffic signs and act accordingly, for example, stop at
stop signs. Some sample images are shown in Figure
1. There exists a wide variety of real world conditions
under which the platform may come to a stop sign. As

such, it is difficult or even impossible to develop a per-
ception strategy with fixed parameters and algorithms
that performs reliably in dynamic environments. Real
world considerations mentioned above must be taken
into account if the platform is to act intelligently in
an autonomous fashion in a dynamic environment.

In this paper we present a method, based on our re-
search into an outdoor navigation task, that allows the
landmark recognition system to adjust itself automati-
cally to accommodate environmental variations to pro-
vide robust performance. With this method, the level
of achievable recognition performance is increased
through on-line acquisition/recognition of model via
direct interaction with the world, thereby guiding ac-
tion for navigation.

Our method, called local reinforcement learning,
combines local learning and reinforcement learning
into a single mechanism. Like local learning, the
method first partitions the input space into a set
of disjoint local regions using techniques that de-
termine the number of regions based on indicators
that entail intra-region cohesion and inter-region iso-
lation. Within each region, reinforcement learning
then induces a mapping from input images to recogni-
tion strategies using feedback from recognition perfor-
mance. In contrast, typical case-based learning (CBL)
- alocal learning technique with local constant approx-
imation - uses a representative case associated with
each region to guide future performance. Such a rep-
resentative case, however, might not be sufficient to
accommodate within its region variations that are ei-

ther inherent or caused by inadequate region indica-
tors.

The original contribution of this paper is to pro-
vide an efficient learning method for constructing per-
ception strategies for autonomous navigation that are
highly adaptive to changes in environmental condi-
tions. We begin with a discussion of the need for
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Figure 1: Sample color images with varying outdoor conditions.

learning in autonomous navigation, after which we
describe the technical details of the proposed learn-
ing technique. We then present several experimental
studies evaluating our method. These results are dis-
cussed and analyzed. Finally, we conclude with the
key aspects of this paper.

2 Why Learning?

A typical model based object recognition system
has three key components: image segmentation, fea-
ture extraction, and model matching. The goal of im-
age segmentation is to extract meaningful objects from
an input image. Image segmentation is an important
and one of the most difficult low-level image process-
ing and computer vision tasks. All subsequent image
interpretation tasks including feature extraction and
model matching, rely heavily on the quality of the
image segmentation process. Generally, this in turn
spells out the difference between success and failure in
vision-based autonomous navigation.

The inability to adapt the image segmentation pro-
cess to real-world changes is one of the fundamental
weaknesses of typical model-based object recognition
systems. Despite the large number of image segmen-
tation algorithms available, no general methods have
been found to process the wide diversity of images en-
countered in real world applications. Typical object
recognition systems are open-loop. Segmentation and
feature extraction modules use default algorithm pa-
rameters, and generally serve as pre-processing steps
to the model matching component. These parame-
ters are not reliable, since when the conditions for
which they are designed are changed slightly, these

algorithms generally fail without any graceful degra-
dation in performance. As an example, Figure 2 shows
segmentation of images shown in Figure 1 obtained
using the Phoeniz algorithm [8] with default param-
eters. From these segmentation results, no algorithm
would be able to perform model matching with suf-
ficient confidence to recognize the stop sign, i.e., the
octagon. Moreover, purely geometric or physics-based
invariant approaches, without learning, are not suffi-
cient to recognize objects under a wide variety of sit-
uations encountered in real-world navigation (5, 7).

One might contemplate the idea of using color in-
formation for detecting and recognizing objects, such
as stop signs. However, there are three major diffi-
culties associated with such simple, color-based tech-
niques. First, there are times at which color features
can not be reliably detected. For example, the im-
ages shown in Figures 1(u) and (v) do not reveal any
color information for recognizing the stop sign. This
happens when one is moving towards the sun. Sec-
ond, there are scenarios where the same characteris-
tic color (red) information is associated with traffic
signs having completely different meaning. For ex-
ample, in order to differentiate between “DO NOT
ENTER” (Figures 1(w) and (x)) and “STOP” signs,
color information alone is not sufficient. Additional
information, such as shape, must be included. Third,
as shown in Figure 2, sophisticated, color-based seg-
mentation techniques, such as Phoeniz, can fail if they
do not adapt to changes in environmental conditions
including lighting, color, distance and orientation.

In ordor to achieve reliable performance in real
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Figure 2: Segmentations of images shown in Figure 1 using the Phoeniz algorithm with default parameters

world navigation application, therefore, a need exists
to apply learning techniques that are capable of induc-
ing a highly adaptive mapping from input images to
segmentation strategies needed for successful recogni-
tion. This paper presents a computationally efficient
local reinforcement learning technique that is able to
compute such a mapping from actual data. It takes
the output of the recognition algorithm and uses it as
a feedback to influence the performance of the segmen-
tation process. As a result, segmentation strategies,
conditioned on current inputs, for performing a par-
ticular task are chosen more judiciously, i.e., so as to
maximize the confidence of model matching.

Note that both adaptive and learning systems can
automatically adjust their internal representations,
and both make use of performance feedback informa-
tion. The major differences, however, are a matter
of degree, emphasis, and intended purpose. A vision
system that treats every distinct input image as novel
is limited to adaptation, whereas a system that corre-
lates past experiences with past inputs, and one that
can recall and exploit those experiences, is capable of
learning. Since, in the process of learning, the learn-
ing system must be capable of adjusting its memory
to accommodate new experiences, a learning system
must, in some sense, incorporate an adaptive capa-

bility. However, the design and intended purpose of
a learning system require capabilities beyond that of
adaptation. In this paper, our focus is on learning
systems.

3 The Approach

We develop a general approach for achieving ro-
bust image segmentation and object recognition by
using local reinforcement learning that combines local
learning and reinforcement learning in a novel way.
The system’s functional structure is shown in Figure
3. The basic assumption is that we know the models
of the objects that are to be recognized, but we do not
know the number of objects and their locations in the
image. The image segmentation component extracts
meaningful objects from input images, feature extrac-
tion component performs polygonal approximation of
connected components, and the model matching com-
ponent tells us which regions in the segmented image
contain the model object by generating a real valued
matching confidence indicating the degree of success.
Reinforcement learning module then uses this confi-
dence value as feedback to induce a mapping from
images to segmentation strategies within each local
region created from partitioning of the feature space.
The goal is, therefore, to maximize the matching con-
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idence by finding a set of segmentation algorithm pa-
rameters for the given recognition task.

Matching Confidence

Model Matching

Reinforcement
Learning Module

Input Images

Figure 3: Reinforcement learning based system for
recognition.

There are good reasons for using reinforcement
learning in our object recognition system. First, re-
inforcement learning requires knowing only the good-
ness of the system performance rather than the details
of algorithms that produce the results. In the object
recognition system, model matching confidence indi-
rectly evaluates the performance of image segmenta-
tion and feature extraction processes. It is a natural
choice to select matching confidence as a reinforce-
ment signal. Second, convergence is guaranteed for
several reinforcement learning algorithms. Third, re-
inforcement learning performs efficient hill-climbing in
a statistical sense without excessive demand for com-
putational resources. Furthermore, it can generalize
over unseen images. Fourth, tt is feasible to construct
fast, parallel devices to implement this technique for
real-time applications. It thus fits our goal nicely
here. Likewise, local learning has the advantage of
avoidance of negative spatial cross-talk typically asso-
ciated with global learning techniques, because map-
pings are constructed separately within each local re-
gion in the feature space. Furthermore, local learning
often gives rises to better improvement in recognition
performance, as we shall see later. Note that the in-
tegration of the two paradigms (local learning and re-
inforcement learning) at the algorithmic level makes
it possible to take advantages of some of the best fea-
tures of both worlds.

3.1 Related Work

Robot learning and landmark recognition are active
areas of research [4, 11, 15, 18]. The challenge is to

extend operating conditions of a mobile robot. Adap-
tation and learning play an important role for achiev-
ing the robustness of algorithms. The work presented
in this paper is most closely related to earlier work by
the authors [12], in which they describe a reinforce-
ment learning system that uses recognition output as
feedback to guide the segmentation process. However,
their method is global in that only a single mapping
is induced over the entire input space. In addition,
their system was evaluated only on a small number of
images. In this work, we use simulated images with
controlled statistics to show that our method can in-
deed learn correct segmentation strategies for recog-
nition of objects. Further, we show that local learn-
ing described here can outperform the global learning
method using empirical results based on a large set of
real images of traffic signs.

An adaptive approach to image segmentation is
proposed by Bhanu and Lee [1}. Their system uses
genetic and hybrid algorithms for learning segmenta-
tion parameters. However, the recognition algorithm
is not part of the evaluation function for segmenta-
tion in their system. The genetic or hybrid algorithms
simply search for a set of parameters that optimize a
prespecified evaluation function (based on global and
local segmentation evaluation) that may not best serve
the overall goal of robust object recognition. Further-

. more, their work assumes that the location of the ob-
ject in the image is known for specific photointerpre-
tation application. In our work, we do not make such
an assumption. We use explicit geometric model of an
object, represented by its polygonal approximation, to
recognize it in the image.

The ALVINN (Autonomous Land Vehicle in a Neu-
ral Network) system [13] is a neural network based
system that learns to drive in a variety of autonomous
navigation scenarios, including single-lane paved and
unpaved roads, multilane lined and unlined roads,
and on- and off-road environments having obstacles.
ALVINN’s flexible operating conditions can be at-
tributed to the fact that it does not rely on a precise
model of image features for navigation. Instead, it ac-
quires this model information through learning under
various driving conditions. However, this and other
supervised learning techniques rely heavily on a com-
petent, external teacher to provide training examples.
The disadvantage of this “external teacher” method
is that such a competent teacher may not be always
available. In addition, ALVINN is designed to follow
road marks such as lines. There are situations where
road marks either do not exist or are hard to follow.
In contrast, our system is designed to recognize land-
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mark such as traffic signs under changing environmen-
tal conditions.

Zheng et al. [18] describe an adaptive system
for traffic sign recognition on motorways. The sys-
tem uses color image segmentation and color topology
analsis for traffic sign detection. It then uses weighted
K nearest neighbor rules for classification. The main
concern with this type of “lazy” learning is memory re-
quirement. A memory consolidation process must be
in place to satisfy practical constraints. In contrast,
our system learns to induce a compact, local mapping
from input images to segmentation strategies within
each partition. In addition, in our system learning is
driven by the output of model matching.

4 Local Reinforcement Learning
4.1 Local Learning

Local learning first partitions the space of input
variables into a set of local regions (clusters). The
method then learns a separate mapping individually
in each local region. The partitioning procedure used
in this paper is the K-means method [9]. The num-
ber of regions, K, is determined experimentally using
the Calinski-Harabasz Index [3] as an indicator. The
Calinski-Harabasz Index is chosen because it gives the
best performance among 30 indicators [10]. The Index
is defined as

I = (Trace(B)/(K —1))/(Trace(W)/(n - K)) (1)

where n is the number of sample data, and Trace de-
notes the trace operation of a matrix. B and W are the
between and within cluster sum of squares and cross
product matrices from multivariate statistics, respec-
tively. If d> denotes the mean of all n(n—1)/2 squared
distances, and d? that of the n;(n; — 1) /2 squared dis-
tances within the lth class (I = 1,2,---, K), then (1)
can be computed according to

I=@+ 2 X a0/ -4 @
where
1 K
Ak = — > (- 1)(d* - d). (3)

=1

Larger Index values indicate greater class cohesion and
external isolation. Once the number of regions (clus-
ters) has been determined, a local mapping in each re-
gion is constructed using connectionist reinforcement
learning. For a given input, generalization is made
by searching for the nearest cluster and then applying
the mapping associated with the cluster to compute
segmentation parameters.

4.2 Connectionist Reinforcement Learn-
ing

The particular class of reinforcement learning algo-
rithms employed in each local region for our object
recognition system is the connectionist REINFORCE
algorithm ([16], where units in such a network are
Bernoulli semilinear units, in that the output of such a
unit, i, is either 0 or 1, determined stochastically using
the Bernoulli distribution with parameter p; = f(s;),
where f is the logistic function

f(si) = 1/(1+ exp(-s;)) 4)

and s; = 3, w;;z; is the usual weighted summation
of input values to that unit. For such a unit, p; repre-
sents its probability of choosing 1 as its output value.
The left graph in Figure 4 depicts a connectionist rein-
forcement learning system and the right graph shows
a Bernoulli semilinear unit in such a system.
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)

o

‘sert o ol ks

Figure 4: Left: Connectionist reinforcement learning
system. Right: Bernoulli semilinear unit.

In the general reinforcement learning paradigm, the
network generates an output pattern and the environ-
ment responds by providing the reinforcement r as its
evaluation of that output pattern, which is then used
to drive the weight changes according to the particu-
lar reinforcement learning algorithm being used by the
network. For the Bernoulli semilinear units used in
this research, the REINFORCE algorithm prescribes
weight increments equal to

Aw;j = a(r - b) (y; - pg)z,- (5)

where a is a positive learning rate, b serves as a rein-
forcement baseline, z; is the input to each Bernoulli
unit, y; is the output of the ith Bernoulli unit, and p; is
an internal parameter to a Bernoulli random number
generator.

It can be shown [16] that, regardless of how b is
computed, whenever it does not depend on the imme-
diately received reinforcement value r, and when r is
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e Partition training data into K classes
o For each class do:
- LOOP:

(b) Perform noise clean up

confidence r

(h) rr=rr+r

1. rr =0 (rr: average matching confidence)
2. For each image 7 in the training set do

(a) Segment image i using current segmentation parameters

(c) Get segmented regions (also called blobs or connected components)
(d) Perform feature extraction for each blob to obtain token sets

(e) Compute matching of each token set against stored model, return the highest matching

(f) Update W according to eq. (7) using r as reinforcement
(g) Compute new parameters for the segmentation algorithm

— UNTIL number of iterations is equal to N or rr/n > Ry (Threshold)

Figure 5: Main steps of the local reinforcement learning algorithm.

sent to all the units in the network, such an algorithm
satisfies

E{AW|W} = aVwE{r|W} (6)

where E denotes the expectation operator, W rep-
resents the weight matrix of the network, and AW
is the change of the weight matrix. A reinforcement
learning algorithm satisfying the above equation has
the convergence property that the algorithm statis-
tically climbs the gradient of expected reinforcement
in weight space. For adapting parameters of the seg-
mentation algorithm, it means that the segmentation
parameters change in the direction along which the
expected matching confidence increases.

The specific algorithm we use here has the follow-
ing form: At the £*! time step, after generating output
y(t) and receiving reinforcement r(t), i.e., the confi-
dence level indicating the matching result, increment
each weight w;; by

Awis(f) = a(r(t)_m_1))(3,..@)_@.@_1))3,._5,1,,.,.((3
where a, the learning rate, and 4, the weight de-
cay rate, are parameters of the algorithm. The term
(r(t) —7(t — 1)) is called the reinforcement factor and
(¥i(t) = 7;(t — 1)) the eligibility of the weight w;; [16].
Generally, the eligibility of a weight indicates the ex-
tent to which the activity at the input of the weight
was connected in the past with unit output activity.

Note that this algorithm is a variant of the one de-
scribed in equation (5), where b is replaced by 7 and
pi by 7;.

7(t) is the exponentially weighted average, or trace,
of prior reinforcement values

F(t) =77t - 1) + (1 - 7)r(t) (8)

with 7(0) = 0. The trace parameter vy was set equal
to 0.9 for all the experiments reported here. Similarly
¥;(t) is an average of past values of y; computed by the
same exponential weighting scheme used for ¥. That
is,

Ti(t) = 77t — 1) + (1 — Mwa (). ©

Note that equation (6) does not depend on eligibility.
Note also that p; in (5) is the theoretical mean of y;,
whereas ; in (7) and (9) is the actual estimate. In ad-
dition, The weight decay (the second term in equation
(7) is used as a simple method to force the sustained
exploration of the parameter space. Empirical study
shows superior performance with this form of weight
update [17]. The local learning algorithm is shown in
Figure 5, where n is the number of training images in
each local region.

5 Empirical Evaluation

This section describes empirical results evaluating
the performance of our system on a large set of out-
door color images. The system has been implemented
on a SUN Ultra-1 workstation. For the real images

100



the segmentation algorithm takes about one quarter
of per iteration time. Programming optimizations can
reduce the expense per iteration further for real-time
performance.

The Phoeniz algorithm [8] was chosen as the im-
age segmentation component in our system. Phoeniz
works by splitting regions using a histogram for color
features. We have chosen the Phoeniz algorithm be-
cause it has been widely used, refined and well docu-
mented. Phoeniz has been extensively tested on color
imagery and has become an important part of the
DARPA’s Image Understanding testbed at SRI In-
ternational. Note that our system is designed to be
independent of segmentation algorithms and images.
It is a basic learning framework that can be applied
to any object recognition system.

The Phoeniz algorithm has a total of fourteen ad-
justable parameters. The four most critical ones that
affect the overall results of the segmentation process
are used in learning. These parameters are Hsmooth,
Mazmin, Splitmin, and Height. Hsmooth is the width
of the histogram smoothing window, where smoothing
is performed with a uniformly weighted moving aver-
age. Mazmin defines the peak-to-valley height ratio
threshold. Any interval whose peak height to higher
shoulder ratio is less than this threshold is merged
with the neighbor on the side of the higher shoulder.
Splitmin defines the minimum size for a region to be
automatically considered for splitting. This is an abso-
lute value, not a percentage of the image area. Height
is the minimum acceptable peak height as a percent-
age of the second highest peak. Table 1 shows sample
ranges for each of these parameters. The resulting
search space is about one million sample points.

The feature extraction consists of finding polygon
approximation tokens for each of the regions obtained
after image segmentation. The polygon approxima-
tion is obtained using a split and merge technique (2]
that has a fixed set of parameters. Object recogni-
tion employs a cluster-structure matching algorithm
[2] that is based on the clustering of translational and
rotational transformations between the object and the
model for recognizing 2-D and 3-D objects. It outputs
a real number indicating the confidence level of the
matching process. This confidence level is then used
as a reinforcement signal to drive learning. These al-
gorithms were chosen simply because they are avaiable
in house.

5.1 Experimental Results

The experiment described here consists of 500 im-
ages, some of which are shown in Figure 1. These im-
ages are collected in late afternoon over several days

(including a rainy day) using a Canon PowerShot 600
digital camera. They are taken in a variety of loca-
tions in Southern California. These images simulate
an autonomous navigation scenario in which an au-
tonomous vehicle must be able to recognize the stop
sign. The size of the images is 78 by 104 pixels.
Eighty images are randomly selected as training
data, and the rest (420) as testing data. A princi-
pal component analysis is carried out using the red
color component. Red component of each image is
projected onto the subspace spanned by the first 4
eigen vectors corresponding to four largest eigen val-

ues. These inputs are normalized to lie between 0 and
1.

Output Bernoulli Units

Hidden Units

Inputs

()

Figure 6: A connectionist reinforcement learning net-
work.

(1) Local Learning: The training data are first
clustered using the K-means algorithm based on the
eigen inputs. The K-means algorithm was repeatedly
applied to the training data with varying K. The K
value that attained the largest Calinski-Harabasz In-
dex was selected as the final cluster number (4 in this
experiment). The resulting clusters contain 25, 26,
13, and 16 training images, respectively. Within each
cluster, a network having 3 hidden Bernoulli units and
20 output Bernoulli units that encode the four Phoeniz
parameters was trained using the local learning algo-
rithm described in Figure 5. Each hidden unit takes
four eigen inputs and there are no connections from
inputs to output units. Because of the independence
of the output units, the effective number of weights
in the network is 19 (4 (input weights) x 3 (hidden
units) + 3 (hidden to output weights) + 4 (biases)).
Figure 6 depicts such a network.

(2) Global Learning: A global network, simi-
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Table 1: Sample ranges for selected Phoeniz parameters.

Parameter Sampling Formula Test Range

Hsmooth: hsmooth=1 + 2 * hsindex 1-63
hsindex € [0 : 31]

Maxmin: ep=In(100) + 0.05 * mmindex | 100 - 471
mmindex € [0 : 31] maxmin = exp(ep) + 0.5

Splitmin: splitmin=9 + 2 * smindex 9-71
smindex € [0 : 31]

Height: height=1 + 2 * htindex 1-63

htindex € [0 : 31]

lar to the one shown in Figure 6, is trained on the
entire training data to construct a single mapping.
The network has 8 hidden Bernoulli units, and 20
output units. The number of hidden units is deter-
mined experimentally that achieves the best perfor-
mance among several trials. In comparison with local
learning, the effective number of free parameters in the
global network is 49 (4 (input weights) x 8 (hidden
units) + 8 (hidden to output weights) + 9 (biases)).

(3) Simple Case-Based Learning: Instead of
constructing a local mapping within each cluster, as
is done in the local learning method, the simple CBL
method first learns, for each cluster, a set of segmen-
tation parameters achieving the best performance for
the image closest to the cluster center. It then stores
the set of segmentation parameters in a memory lo-
cation associated with the cluster center. For a given
test image, CBL returns the set of segmentation pa-
rameters associated with the cluster that is closest to
the input image.

0.8 g

‘Localleaming’

0.7 ‘GlobalLeaming’

0.6
0.5

0.4

Confidence Level

03

0.2
0 20 40 60 80 100 120 140 160
Iterations

Figure 7: Confidence level received during learning.

Comparison of Learning Methods: In order to
evaluate our local learning system for object recog-
nition described here, its performance was compared

against several other methods.

(a) Comparison of Local and Global Learn-
ing: In the first experiment, each local network was
allowed 150 iterations, i.e., 150 sweeps through local
training data, and then four confidence values over the
four clusters were averaged. In contrast, the global
network was given 600 iterations through the entire
80 training images. Confidence values received over
every 4 iterations were averaged and plotted. Figure
7 shows the average matching confidence received over
time by the two methods. It can be seen that, given
the same amount of computation, the local method
learned much faster and its confidence value exceeded
0.7, whereas the global confidence value was slightly
above 0.5. Furthermore, when applied to 420 test im-
ages, the local method achieved an average confidence
value of 0.71, whereas the global method only man-
aged to achieve an average value of 0.59. Parame-
ter values used in these experiments are: § = 0.005
(weight decay rate (7)), v = 0.85 ((8) and (9)), and
the learning rate @ = 0.2 for local learning and a = 0.1
for global learning.

(b) Comparison of Local and Simple Case-
Based Learning: In the second experiment, case-
based learning (CBL) was applied to the same task.
The CBL method achieved an average confidence
value of 0.21 on the testing data, which is far worse
than the local learning method. This demonstrates
that the local learning approach has the ability to com-
pensates not only variations within each cluster, but
also inadequate cluster characterization.

(c) Comparison of Local Learning vs. No

Learning: In the final experiment, the Phoeniz algo-
rithm with default parameters was used. The system

‘was only able to achieve an average confidence value

of 0.04, which is extremely poor. Figure 8 shows the
segmentation results of the images shown in Figure 1
using the local learning method, from which the sys-
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Figure 8: Segmentation of images shown in Figure 1 using the Phoeniz algorithm with learned parameters

tem was able to recognize the stop sign (octagon) with
sufficient confidence (0.71 confidence level on 420 test
images). Note that these images are part of the testing
data.

5.2 Discussion

In this paper, we have focused our attention on the
subject of landmark recognition, an important area
of perception for mobile agents. Detection and mo-
bility can be addressed in the following way. Typ-
ically, a landmark is viewed from different distances.
The landmark representation and associated matching
techniques have to correlate with what is observed.
As an example, when distances are relatively large,
we can use feature clues (e.g., red color for stop sign,
yellow for pedestrian crossing, etc.) to localize traffic
signs. When we are relatively close we can then use
geometric model matching (this is what is done here).

Finally, The images shown in Figure 1 are already
“presegmented” in the sense that they all contain a
stop sign in roughly the center of the image. It can
be argued, however, that normal navigation scenarios
in which one reacts to a stop sign often contain the
stop sign as a stand alone object. While it is true
that a sign taken in a standard urban view with other
signs nearby would provide a more compelling test,

|

this would depend, to a large extent, on the capabil-

ities of the segmentation and model matching algo-
rithms used.

6 Conclusion

We have presented a general approach to achieving
robust image segmentation and object recognition for
autonomous navigation in outdoor environments. The
approach systematically uses model matching confi-
dence as feedback in a novel reinforcement learning
framework to efficiently learn segmentation parame-
ters and perform object recognition simultaneously.
Experimental results demonstrate that the simple ap-
proach is very promising in accommodating the wide

variety of images encountered in outdoor autonomous
navigation.
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